
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Mar. 2010, p. 1955–1966 Vol. 76, No. 6
0099-2240/10/$12.00 doi:10.1128/AEM.02126-09
Copyright © 2010, American Society for Microbiology. All Rights Reserved.

Sequence Analysis of Leuconostoc mesenteroides Bacteriophage
�1-A4 Isolated from an Industrial Vegetable Fermentation�

Z. Lu,1* E. Altermann,2 F. Breidt,3,4 and S. Kozyavkin5

Kennesaw State University, Kennesaw, Georgia 301441; AgResearch Limited, Grasslands Research Centre,
Palmerston North, New Zealand2; Department of Food, Bioprocessing and Nutrition Sciences,

North Carolina State University, Raleigh, North Carolina 27695-76243; U.S. Department of
Agriculture, Agricultural Research Service, Raleigh, North Carolina 27695-76244;

and Fidelity Systems Inc., Gaithersburg, Maryland5

Received 2 September 2009/Accepted 20 January 2010

Vegetable fermentations rely on the proper succession of a variety of lactic acid bacteria (LAB). Leuconostoc
mesenteroides initiates fermentation. As fermentation proceeds, L. mesenteroides dies off and other LAB com-
plete the fermentation. Phages infecting L. mesenteroides may significantly influence the die-off of L. mesen-
teroides. However, no L. mesenteroides phages have been previously genetically characterized. Knowledge of
more phage genome sequences may provide new insights into phage genomics, phage evolution, and phage-host
interactions. We have determined the complete genome sequence of L. mesenteroides phage �1-A4, isolated
from an industrial sauerkraut fermentation. The phage possesses a linear, double-stranded DNA genome
consisting of 29,508 bp with a G�C content of 36%. Fifty open reading frames (ORFs) were predicted. Putative
functions were assigned to 26 ORFs (52%), including 5 ORFs of structural proteins. The phage genome was
modularly organized, containing DNA replication, DNA-packaging, head and tail morphogenesis, cell lysis,
and DNA regulation/modification modules. In silico analyses showed that �1-A4 is a unique lytic phage with
a large-scale genome inversion (�30% of the genome). The genome inversion encompassed the lysis module,
part of the structural protein module, and a cos site. The endolysin gene was flanked by two holin genes. The
tail morphogenesis module was interspersed with cell lysis genes and other genes with unknown functions. The
predicted amino acid sequences of the phage proteins showed little similarity to other phages, but functional
analyses showed that �1-A4 clusters with several Lactococcus phages. To our knowledge, �1-A4 is the first
genetically characterized L. mesenteroides phage.

Bacteriophages are the most abundant biological entities
(estimated to be on the order of �1031) on the planet (9, 18).
Phages are ubiquitous in nature and can influence the micro-
bial ecology and genetics of bacteria. Because of their small
(usually �60 kb) genomes, phages can provide an excellent
model system for studying many biological processes, including
DNA replication and genetic evolution. Despite this, many
phages remain uncharacterized. Very little is known about
phage diversity and phage-host interactions owing to the small
number of sequenced phages. Furthermore, the existing phage
sequence database is highly biased toward a limited spectrum
of phage hosts, namely, Enterobacteriaceae, Bacillus, Staphylo-
coccus, Pseudomonas, Vibrio cholerae, Lactococcus, Streptococ-
cus thermophilus, and S. pyogenes. The majority of host species
for sequenced phages are either pathogenic or dairy-related
bacteria. Most of the newly sequenced phage genes have no
assigned functions or matches in the GenBank database (7).

Vegetable fermentations rely on a variety of lactic acid bac-
teria (LAB). The proper succession of LAB directly deter-
mines the quality and safety of the final fermentation products.
Leuconostoc mesenteroides initiates most vegetable fermenta-
tions. It converts the sugars in vegetables (primarily glucose
and fructose) to lactic acid, acetic acid, ethanol, CO2, and

other flavor compounds (22, 58, 59, 60, 61). Acid production
lowers the pH of fermenting vegetables and inhibits the growth
of many microorganisms, including pathogens. CO2 produc-
tion promotes the establishment of an anaerobic environment
which favors the growth of other LAB. The metabolites pro-
duced by L. mesenteroides largely determine the flavor charac-
teristics of the final products. As fermentation proceeds, L.
mesenteroides rapidly dies off. Other LAB, including Lactoba-
cillus plantarum, take over and complete the fermentation.

It has been a widely held view that the disappearance of L.
mesenteroides and the subsequent bacterial succession in sau-
erkraut fermentations are due to the inhibitory effect of acids
that accumulate during fermentation (54, 61). Little is known
about other factors that may play a role in bacterial succession.
Recent studies have shown that phages are present in the
vegetable fermentations (4, 47, 48, 74, 75). Because of the
rapid lytic cycle of these phages, they may significantly impact
starter cultures and bacterial succession in vegetable fermen-
tations (56). Phages active against L. mesenteroides have been
isolated and characterized (48); however, genome sequences
have not been reported.

L. mesenteroides phage 1-A4 (designated �1-A4) is of par-
ticular interest. �1-A4 is a lytic phage that was repeatedly
isolated during the initial stages of a commercial sauerkraut
fermentation. As a result, �1-A4 may significantly influence
the survival of L. mesenteroides and flavor development during
sauerkraut fermentation. It was found that �1-A4 infects at
least three different strains of L. mesenteroides (48), and there-

* Corresponding author. Mailing address: Kennesaw State Univer-
sity, 1000 Chastain Road, Kennesaw, GA 30144. Phone: (770) 423-
6230. Fax: (770) 423-6625. E-mail: jean_lu@kennesaw.edu.

� Published ahead of print on 29 January 2010.

1955

 by on M
arch 4, 2010 

aem
.asm

.org
D

ow
nloaded from

 

http://aem.asm.org


fore it may also promote genetic exchange and genetic diversity
in microbial communities (34).

The objectives of this study were to determine and analyze
the complete genome sequence of �1-A4, to experimentally
identify the structural protein genes, and to compare the ge-
nome organization with that of related phages. To our knowl-
edge, this study represents the first complete genomic and
molecular characterization of Leuconostoc phage. The results
from this study may provide new insights into our understand-
ing of phage genetics. This study may aid the development of
phage control technologies in vegetable and other fermenta-
tions that are susceptible to phage attack.

MATERIALS AND METHODS

Bacterial strain, phage, and media. Phage �1-A4 and host L. mesenteroides
1-A4 were both isolated on the first day of fermentation in a 90-ton industrial
sauerkraut fermentation tank (48). The phage and its host were maintained as
separate glycerol stocks at �80°C for later use. L. mesenteroides 1-A4 was cul-
tured statically in de Man-Rogosa-Sharpe (MRS) broth (Difco Laboratories,
Detroit, MI) at 30°C. �1-A4 was propagated on L. mesenteroides 1-A4 in MRS
broth supplemented with 10 mM CaCl2 at 30°C.

Phage lysate preparation. Phage lysate was prepared as previously described
by Lu et al. (46, 47). Briefly, early-log-phase host 1-A4 cells were inoculated with
a �1-A4 stock at a multiplicity of infection of about 0.01 and then incubated at
30°C until complete cell lysis occurred (in about 6 h). The lysate was centrifuged
at 4,000 � g for 10 min and filtered (0.22-�m pore size). The filtrate was treated
with DNase I and RNase A. Phage particles were concentrated by polyethylene
glycol precipitation and then purified by cesium chloride density gradient ultra-
centrifugation at 600,000 � g for 6 h at 15°C.

Phage DNA preparation. Phage DNA was prepared from the ultracentrifuge-
purified phage preparation by phenol-chloroform extraction as described previ-
ously (46, 47). Briefly, the CsCl-purified phage suspension was extracted with
phenol and chloroform-isoamyl alcohol, followed by extraction with chloroform-
isoamyl alcohol. Phage DNA was precipitated with sodium acetate and ethanol
and then pelleted with a microcentrifuge. After being washed with 70% ethanol,
the DNA pellet was air dried and then resuspended in Tris-EDTA buffer.

Phage genome sequencing and verification of the assembly. Initial sequencing
was done using plasmid libraries of short phage fragments. �1-A4 DNA was
digested with MseI, and the resulting fragments were ligated into pUC18. Re-
combinant clones (n � 24) were sequenced using vector primer sequences. The
sequences of 184 fragments were used to design additional primers. Sequencing
reactions were then performed directly on uncut phage DNA using Thermo-
Fidelase and Fimer technology (63, 67). This resulted in one linear fragment
representing the completed phage genome. Trace assembly was done with Phred/
Phrap software (21). Selected genome regions were verified by PCR using the
primers listed in Table 1.

DNA sequence and bioinformatic analyses. The finished phage genome se-
quence was subjected to an automated two-step annotation using GAMOLA
software (global annotation of multiplexed on-site blasted DNA sequences en-
gine [2]). First, the predicted open reading frames (ORFs) were analyzed using
a gapped BLASTP (basic local alignment search tool for protein sequences)
algorithm and the nonredundant protein database provided by the National
Center for Biotechnology Information (November 2009). This revealed common
unbiased protein similarities to all known protein sequences. Second, a custom-

ized database generated from known phage genomes (E. Altermann, unpub-
lished data) was used to reveal phage-specific protein similarities. Additionally,
the deduced amino acid sequences were analyzed by using the Pfam (Protein
Family) (5), TIGRfam (The Institute for Genomic Research, family) (27), and
COG (Clusters of Orthologous Groups of Proteins) (70) functional databases to
detect conserved motifs in the proteins. The automated annotation was aug-
mented by structural analyses including the prediction of Rho-independent ter-
minator structures (20), transmembrane helices (41), and signal peptide se-
quences (6). Subsequently, a manual verification was performed based on the
functional analyses, physical genome properties (e.g., the expected modular
makeup of the phage genome), physicochemical attributes of the predicted
ORFs, and their deduced amino acid sequences.

The Molecular BioComputing Suite (57) was used to calculate the molecular
masses and isoelectric points of predicted proteins of �1-A4.

Analysis of structural proteins. Sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) was performed as described by Lu et al. (46).
Briefly, CsCl-purified phages in SDS-PAGE sample buffer were heated in a
boiling water bath for 10 min and then applied to a NuPAGE precast gradient
minigel (4 to 12% Bis-Tris; Invitrogen Corporation, Carlsbad, CA). After elec-
trophoresis, the protein bands were transferred onto a polyvinylidene difluoride
membrane (0.2-�m pore size) and then stained with 0.1% Amido Black. Visible
protein bands were excised, and their N-terminal amino acid sequences (10 or 11
residues) were determined by ProSeq, Inc. (Boxford, MA). Based on the N-
terminal amino acid sequence of each protein, the corresponding ORF was
identified in the �1-A4 genome.

Functional analysis. A total of 112 phage genomes were analyzed, and a
functional genome tree was generated using compACTor (Altermann, unpub-
lished software) and Mega4 (69). The genomes were chosen from representative
phages of hosts assigned to the phylogenetic class of bacilli in GenBank. Briefly,
a unique genomic distance matrix was calculated based on round-robin ORF
comparisons and subsequently imported into Mega4 for visualization. The func-
tional distribution was visualized using the unweighted-pair group method using
average linkages (UPGMA) (68).

Nucleotide sequence accession number. The final verified genome sequence
and annotation of �1-A4 were submitted to the publicly accessible GenBank
database under accession number GQ451696.

RESULTS AND DISCUSSION

�1-A4 belongs to the Siphoviridae family in the order Cau-
dovirales (Fig. 1). The average burst size of �1-A4 is 24 par-
ticles per infective center. The latency period is about 30 min
in MRS broth supplemented with 10 mM CaCl2 at 30°C based
on a one-step growth kinetics curve (56). In addition to infect-
ing its natural host, L. mesenteroides 1-A4, �1-A4 was also
found to infect two other L. mesenteroides strains, 1-B8 and
1-E10 (48). To our knowledge, this is the first report of
genomic sequencing and characterization of an L. mesen-
teroides phage at the molecular level.

Genomic features of �1-A4. The genome sequence of
�1-A4 was determined in two steps. Plasmid libraries were
used first to obtain initial phage sequences for primer design,
and in the second step, several rounds of direct genomic se-
quencing were performed that yielded one linear contig (see

TABLE 1. Primer pairs used in PCR and the sizes of PCR products

Primer sequence (5� to 3�) Size (bp)

Forward Reverse Predicted Estimated

AAATATCAGTAGCAACTACACCCGACAAGTCC ATGAAACGAGAACGACAGCAACGTCTTA 3,149 3,100
AATACACAAACACAATCATCAACCCAGTTAG ATGAAACGAGAACGACAGCAACGTCTTA 1,340 1,350
AAATATCAGTAGCAACTACACCCGACAAGTCC TGAAGAGATGTTCCGTAATGAGACTGGTCA 1,224 1,250
TCCCACAATTCAAGTTCATTAATACTATCAG ATTGTTGTGTTCATTATAGGCAAATAGC 978 950
AGCAGAGTTCATTGCAGTTGAGTTTACAAAGG ATCATTCAAAGCAACGGCGTTCTTATTACTC 910 900
TTCTCAGCGTACATAAACTTAAGAACTTGG TACGTACCTTTGGTCTCTGGAATATTGTATC 886 875
AATACACAAACACAATCATCAACCCAGTTAG TATTGTACGTGCCATATTATTAGCCGTAATCC 738 725
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Materials and Methods for details). The resulting genome se-
quence and the predicted gene model were verified by PCR
amplification for accuracy of sequence assembly. The mea-
sured sizes of PCR products agreed well with the correspond-
ing predicted sizes (Table 1), which confirmed the unusual
genome structure of �1-A4. Furthermore, the repeats flanking
the predicted origin of DNA replication were amplified and
resequenced.

�1-A4 has a linear, double-stranded DNA genome consist-
ing of 29,508 bp with a G	C content of 36%, which is very
close to the G	C content (37%) of L. mesenteroides subsp.
mesenteroides ATCC 8293 (53), which is closely related to the
natural host of �1-A4 (L. mesenteroides 1-A4). The origin of
DNA replication and a cos site were identified in the genome
(Fig. 2 and 3). Two adjacent runoff sequencing reactions ob-
tained during Sanger sequencing of the phage genome identi-
fied the cos site boundaries (Fig. 3a and c). Manual enhance-
ment of the electropherograms resulted in the identification of
the 22-nucleotide (nt) cos site sequence (GGTTAATAGTAG
TCTTTTTTAA) (Fig. 3b). The presence of a cos site indicated
that the phage DNA may be circularized upon entry into the
host. The origin of DNA replication was identified based on its
similarities in structure to other phage replication origins (3,
38). Briefly, a noncoding region was identified harboring an
AT-rich domain (50 to 60 nt, 
95%) flanked by direct and
indirect repeat structures. In �1-A4, the noncoding region
spans over 410 nt and contains a 55-nt AT-rich domain
(98.19%) flanked by nine different types of direct and indirect
repeats.

Bioinformatic analysis of the �1-A4 genome revealed 50
possible ORFs. The ORFs are numbered consecutively start-
ing from the ORF immediately downstream of the origin.
Twenty-two ORFs were located on one strand, and 28 ORFs
were on the complementary strand (Table 2 and Fig. 2). Of the
50 ORFs, 48 apparently initiated translation with the ATG
start codon, 1 initiated with TTG, and 1 initiated with GTG
(Table 2). Forty-six of the 50 ORFs were preceded by potential
Shine-Dalgarno sequences (64) complementary to the 3� end
of the 16S rRNA gene of L. mesenteroides ATCC 8293 (5�-C
ACCTCCTTTCT-3�). The consensus sequence (AGGAGG)
of Shine-Dalgarno elements is generally conserved and was
chosen as the recognition sequence for ribosome binding site

(RBS) prediction (64). An in silico restriction site analysis of
the nucleotide sequence agreed well with the experimentally
determined restriction pattern (Fig. 4).

A total of 26 (52%) ORFs showed homology with previously
characterized genes or were functionally annotated based on
their respective positions in the phage genome. In many cases,
homology to sequences of phages infecting gram-positive bac-
teria was found (Table 2). Twelve ORFs exhibited similarities
to uncharacterized database entries (conserved hypotheticals),
and 12 other ORFs had no homology to sequenced genes.

The phage genome was found to be modularly organized,
consisting of DNA replication, DNA-packaging, head and tail
morphogenesis, cell lysis, and gene regulation modules (Fig.
2). In silico analyses revealed that �1-A4 contains a large-scale
genome inversion (�30% of the genome) compared to other
phages, including the lysis module, part of the structural mod-
ule, and the likely cos site. The predominant genome of phages
with hosts phylogenetically closely related to �1-A4 is linear,
with nearly all of the genes located on the sense strand (for
example, Leuconostoc phage KM20 and L. mesenteroides
ATCC 8293 prophage, Fig. 5). The genome of �1-A4 has a
significant number of genes on the antisense strand, which is
similar to the organization of Lactococcus phage genomes (Fig.
5). Large-scale genome inversions can significantly alter tran-
scription patterns. We have identified putative promoter struc-
tures in the genome sequence of �1-A4 that are likely to
initiate the transcription of the inverted genome region (not
shown). While we cannot exclude the possibility that the ap-
parent inverted sequences are the result of recombination with
another phage, we found no evidence to support this hypoth-
esis. Both sections of the genome of �1-A4 show the same GC
content and codon usage. Further analyses will be carried out
when the genome sequences of other Leuconostoc phages (or
phages isolated from the same ecosystem) become available.

No evidence of a lysogeny module was found in the �1-A4
genome. However, ORF22 exhibited very weak BLASTP sim-
ilarities to the integrase subunit predicted in the Solibacter
usitatus genome (GenBank accession no. CP000473). A two-
iteration PSI-BLAST supported the initial finding. No signifi-
cant functional Pfam or TIGRfam domains were identified.
Only a very weak Pfam match (E value, 0.67) to SNF5, as well
as a weak Pfam match to INI1, was detected. It is possible that
ORF22 represents the remnants of an integration module or
that it encodes a unique phage-specific protein of unknown
function.

DNA replication module. Downstream of the putative origin
of DNA replication (Fig. 2) are five genes (labeled in red)
encoding proteins that may be involved in phage DNA repli-
cation. The predicted gene product of ORF1 (gpORF1) shows
strong similarity to the putative DNA helicase of Streptococcus
pneumoniae SP6-BS73 (Table 2) and that of Lactobacillus re-
uteri (data not shown). The derived protein product of ORF2
displays homology to the adenine-specific DNA methyltrans-
ferase from Streptococcus phage 9429.1. Adenine-specific
DNA methyltransferase is often involved in chromosomal site-
specific DNA modification systems. In prokaryotes, the major
role of DNA methylation is to protect host DNA against deg-
radation by restriction enzymes (12). ORF3 encodes a protein
homologous to various hypothetical bacterial proteins that
have been shown to be bifunctional, having both DNA primase

FIG. 1. Transmission electron micrograph of phage �1-A4.
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and polymerase activities (44). This suggests that the ORF3
protein is possibly involved in DNA synthesis. The predicted
protein products of ORF4 and ORF5 exhibit sequence simi-
larities to the hypothetical DNA polymerases from L. mesen-
teroides subsp. cremoris ATCC 19254 and to the putative DNA
polymerase from Listeria phage P40 (Table 2) and Lactobacil-
lus phage SalI (15), suggesting that these two proteins may be
required for DNA replication.

The predicted product of ORF7 was found to be homolo-
gous to tRNA 3� endonucleases from Listeria phage P40 and
Lactobacillus delbrueckii subsp. bulgaricus ATCC 11842. tRNA
3� endonuclease is a hydrolase that belongs to the metallo-�-
lactamase superfamily. Members of this family are ribonucle-

ases that process the 3� end of tRNA precursors by cleaving the
3� trailing sequence, thereby preparing the pre-tRNA for the
addition of a CCA tail (72).

DNA-packaging module. The protein specified by ORF10
exhibited similarity (Table 2) to a putative terminase large
subunit from prophage lambda Sa2 harbored by Streptococcus
pneumoniae SP14-BS69 (71). Terminases are enzymes involved
in phage DNA packaging into proheads (11). These enzymes
function as heteromultimers consisting of a large subunit and
small subunits. In tailed phages, the small subunits of the
terminase are responsible for specific DNA binding and the
large subunit of the terminase mediates cleavage of the phage
DNA into genome size units to be packaged into the prohead

FIG. 2. Genome atlas of phage �1-A4. The linear map was created using Genewiz, developed by Pederson et al. (60a; Center for Biological
Sequence Analysis), and software developed in house. The legend at the bottom describes the individual panels corresponding to their respective
designations (A to G). (A) Gapped BLASTP results obtained using the nonredundant database. (B) Gapped BLASTP results obtained using the
custom phage genome database. In both panels A and B, blue regions represent unique proteins in �1-A4 and highly conserved features are red.
The color intensity corresponds to the level of similarity. Individual E values were grouped into trust interval levels as depicted in the legend.
(C) G	C content deviation: green shading, low-GC regions; orange shading, high-GC islands. (D) Annotation shows the absolute positions of
functional features as indicated. (E) ORF orientation. ORFs in the sense orientation (ORF 	) are blue; ORFs oriented in the antisense direction
(ORF �) are red. The origin of DNA replication is indicated by a red inverted triangle. The cos site, depicting the phage genome boundaries, is
indicated by two purple inverted triangles on the genome line (gray line). (F) COG classification. COG families were assembled into five major
groups: 1, information storage and processing; 2, cellular processes and signaling; 3, metabolism; 4, poorly characterized; 5, ORFs with
uncharacterized COGs or no COG assignment. (G) GC skew. ORFs with predicted functional annotation are shown at the top of panel A with
bars indicating their absolute sizes. The color coding corresponds to predicted functional phage modules. Red, DNA replication; purple, DNA
packaging; dark blue, phage head; sky blue, tail structure; green, lysis; greenish yellow, DNA regulation and modification; black, not assigned to
a specific phage module.
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(19). Generally, the genes encoding terminase small subunits
are located upstream of the terminase large subunit gene.
Since the gene positions of ORF8 and ORF9 are upstream of
the terminase large-subunit gene (Fig. 2), the products derived
from these two ORFs are likely to be the small terminase
subunits. Experimental data are needed to confirm if these two
proteins are involved in phage DNA packaging.

Head and tail morphogenesis modules. Immediately down-
stream of the DNA-packaging module are the morphogenesis
modules, including the head and tail modules. SDS-PAGE
with a 4 to 12% Bis-Tris gradient gel revealed several struc-
tural protein bands (Fig. 6). Five bands were collected for the
determination of N-terminal amino acid sequences (10 or 11
amino acids at the N terminus). Based on the N-terminal
sequences, ORF11, ORF18, ORF19, ORF21, and ORF23
from the �1-A4 genome were identified as the genes encoding
the proteins extracted from the bands. An N-terminal methi-
onine was absent from four of the five protein sequences (Fig.
6). Processing of the N-terminal methionine during protein
maturation has been observed for many phages and occurs via
host methionine aminopeptidase activity (45, 50).

The phage head morphogenesis module (dark blue in Fig. 2)
includes ORFs encoding the experimentally determined minor
head protein (also a putative portal protein), a putative pro-
head protease, and a putative head protein. The head genes
are clustered together and precede the tail genes. The 42.9-
kDa protein revealed on the SDS-PAGE (Fig. 6) has an N-
terminal amino acid sequence (SQFDDINTRI) identical to
residues 2 to 11 of the predicted gpORF11. This protein shows
homology to the portal protein of Escherichia coli phage HK97
(35) (Table 2). Portal proteins typically function as dodecam-
ers of a single polypeptide with an average molecular mass of
40 to 90 kDa. They form a hole (or portal) that enables DNA
passage into the phage head during packaging (43).

gpORF12 showed similarities to the prohead proteases of
the tailed phages of Aggregatibacter aphrophilus and Burkhold-
eria thailandensis (Table 2) and, to a lesser degree, to the phage
prohead peptidase of Enterococcus faecium phage HK97 (32).
Prohead proteases are involved in the processing of the pro-
head protein (31). The prohead protease gene is generally
located next to the gene for the prohead protein that is pro-
cessed. In some cases, a prohead protease gene may be fused

to the prohead protein gene. Immediately downstream of
ORF12 is ORF13. gpORF13 showed homology to a major
capsid protein of lactococcal phage Q54 (23). Based on the
location of its gene in the genome, the putative major head
protein is likely to be the protein processed by prohead pro-
tease. The cleavage of the head protein by the prohead pro-
tease generates the scaffold protein which aids prohead con-
struction (28, 29).

Downstream of the head morphogenesis module is the tail
morphogenesis module (sky blue in Fig. 2) including genes
encoding a putative tail protein, four experimentally identified
tail proteins (major tail protein, “tape measure” protein
[TMP], baseplate protein, and receptor binding protein), and
two putative baseplate proteins.

The product of ORF15 was found to have some similarity (E
value, 1.2) to a tail protein of Lactococcus lactis phage TP901-1
(IPR011855) in the TIGRfam database. ORF15 is located
between the major head and major tail genes (Fig. 2). In
general, the genes located in this region are involved in the
formation and connection of the head and tail structures and in
DNA packaging (8).

The smallest structural protein observed by SDS-PAGE
(Fig. 6) had a predicted molecular mass of 21.3 kDa. This
protein appears to be the major phage protein, based on the
amount of the protein observed in the SDS-PAGE gel. This
protein is encoded in the tail protein gene region (Fig. 2) and
displayed homology (although it was weak) to a phage major
tail protein from the Phi13 family of Streptococcus pneumoniae
CDC1873-00 (data not shown). The N-terminal sequence (M
YDTRKITHGS) of the protein was identical to predicted res-
idues 1 to 11 of the �1-A4 gpORF18.

A protein with a predicted molecular mass of 91 kDa was the
largest structural protein observed on SDS-PAGE (Fig. 6).
The N-terminal amino acid sequence of the 91-kDa protein
was ANTTSYMLKF, matching predicted amino acids 2
through 11 of the protein encoded by ORF19. The protein
sequence was similar to that of the Mu-like phage minor tail
protein in Bifidobacterium longum DJO10A (42) (Table 2). In
many Mu-like phages, the gene(s) encoding tail fibers is rela-
tively long. The predicted protein product of ORF19 contains
a TMP domain that is only found in phages and prophages.
These types of proteins determine phage tail length. In phage

FIG. 3. Determination of the cos site. Two runoff Sanger electropherograms on linear phage DNA prepared from infectious particles identified
the cos site boundaries. (a and c) Runoff electropherograms. (b) Manually enhanced traces identified the cos sequence. The figure is drawn to scale,
and individual boxes are placed in relation to their expected sequence positions. Trace files were visualized using Chromas (http://www
.technelysium.com.au/).
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TABLE 2. ORFs and genetic features of L. mesenteroides �1-A4a

ORFb

Putative RBSe Database search resultsi for predicted product

Startc Endd 3�-AGGAGG
. . .f

Start
codon

Size
(aa)

Massg

(kDa) pIh Predicted functionj Organism matched E
valuek Referencel

1 361 1713 AGGAGG ATG 450 51.95 5.22 DNA helicase S. pneumoniae SP6-BS73 1e-52 ZP_01821431.1
2 1710 2612 ATG 300 35.00 7.81 Phage-related adenine-specific

DNA methyltransferase
Streptococcus phage 9429.1 8e-86 YP_596295.1

3 2614 3369 TGGTGAA ATG 251 29.07 5.43 DNA primase/polymerase
4 3448 3996 AGGAGAA ATG 182 20.80 8.67 DNA polymerase L. mesenteroides subsp.

cremoris ATCC 19254
3e-78 ZP_03913787.1

5 4005 5840 ACGAGAA ATG 611 69.27 6.39 DNA polymerase Listeria phage P40 4e-42 YP_002261447.1
6 5896 6468 AGGAGAA ATG 190 21.63 4.93 Cons. hypo.
7 6521 7153 GGGAGGA ATG 210 24.01 5.57 Hydrolase (tRNA 3�

endonuclease)
Listeria phage P40 8e-18 YP_002261444.1

8 7164 7490 AGGAGG ATG 108 12.40 4.81 Terminase small subunit,
deduced from position

9 7552 7710 ATG 52 5.94 11.62 Terminase small subunit,
deduced from position

10 7694 9340 AGGAGG ATG 548 62.91 5.02 Terminase large subunit S. pneumoniae prophage
lambda Sa2

2e-72 ZP_01828913.1

11 9353 10474 AGGAGAA ATG 373 42.91 4.89 Portal protein, amino acid
sequence verified

E. coli phage HK97 4.5e-4 This work and
NP_037699

12 10434 11153 AGGAGAA ATG 239 26.18 4.43 Phage prohead protease A. aphrophilus NJ8700
caudovirus phage

1e-04 YP_003006998.1

13 11205 12170 AGGAGAA ATG 321 34.98 4.89 Major capsid protein Lactococcus phage Q54 2e-04 YP_762590.1
14 12310 12582 AGGAGGTG ATG 90 10.35 4.33 Cons. hypo.
15 12572 12850 AGGAGG ATG 92 10.59 10.06 Put. phage tail protein
16 12850 13167 GGGAGG ATG 105 12.39 4.44 Cons. hypo.
17 13164 13493 AGGTGT ATG 109 12.32 10.92 Cons. hypo.
18 13542 14123 AGGAGAA ATG 193 21.25 4.55 Major tail protein, amino acid

sequence verified
This work

19 14197 16866 AGGAAATG ATG 889 90.98 5.34 Phage tail TMP, amino acid
sequence verified

B. longum DJO10A 1e-74 This work and
YP_001955090.1

20 16930 18126 TGGAGGA ATG 398 45.48 4.71 Cons. hypo.
21 18129 19127 AGGAGA ATG 332 36.69 4.49 Baseplate, partial amino acid

sequence match
This work

22 C19335 C19736 AGGAGAA ATG 133 15.74 4.75 Cons. hypo.
23 19816 20583 AGGAGA ATG 255 27.84 5.17 Tail protein, receptor binding,

amino acid sequence
verified

Oenococcus oeni phage fOg44 0.015 This work and
CAD19145.1

24 C20616 C20987 AGGAGA ATG 123 14.00 5.72 Holin G. adiacens ATCC 49175 7e-07 ZP_05738230.1
25 C21054 C21188 AGGAGA ATG 44 5.50 10.37 Cons. hypo.
26 C21185 C21349 TGGAGA ATG 54 6.39 8.34 Unknown
27 C21349 C21579 TTGAGG ATG 76 9.01 8.94 Cons. hypo.
28 C21579 C21815 AGGAAAA ATG 78 9.18 6.31 Unknown
29 C21805 C22020 ATAGGA ATG 71 8.93 6.94 Unknown
30 C22020 C22142 GAGAGG ATG 40 4.43 9.24 Unknown
31 C22139 C22639 AGGAGAA ATG 166 18.81 9.38 Phage-related hydrogenase L. mesenteroides subsp.

mesenteroides ATCC 8293
1e-46 YP_819431.1

32 C22660 C22869 AGGAGAA ATG 69 8.14 4.10 Unknown
33 C22945 C23115 AAGAGGA ATG 56 6.09 8.60 Unknown
34 C23112 C23357 AGGAGAA ATG 81 9.76 5.88 Unknown
35 C23473 C24354 AGGAGGA ATG 293 31.60 5.92 Phage-related amidase, lysin E. faecalis phage phiEF24C 4e-41 YP_001504118.1
36 C24356 C24640 TGGTGG GTG 94 10.61 8.94 Holin
37 C24696 C25061 AGGAGA ATG 121 13.14 4.13 Cons. hypo.
38 C25073 C25807 AGGAGGA ATG 244 26.08 5.85 Baseplate L. lactis phage r1t 0.022 NP_695073.1
39 C25873 C26190 AGGAGG ATG 105 11.91 9.11 Unknown
40 C26192 C26401 TTG 69 8.04 4.93 Unknown
41 C26395 C26670 AGGAAGTG ATG 91 10.63 4.59 Cons. hypo.
42 C26667 C26918 AGGAGA ATG 83 9.71 4.33 Cons. hypo.
43 C26911 C27099 AGGAGA ATG 62 7.58 6.94 Unknown
44 C27086 C27220 GGGAGAA ATG 44 5.35 4.66 Put. baseplate
45 C27368 C27538 AGGAAA ATG 56 6.50 5.31 Repressor, CopG Nocardioides sp. strain JS614 0.26 YP_919229.1
46 C27947 C28066 ATG 39 4.76 10.38 Unknown
47 C28103 C28405 AGGATA ATG 100 11.64 7.84 Phage HNH endonuclease L. casei prophage lambda

Ba04
4e-07 YP_001987049.1

48 C28443 C28634 AGGAGAA ATG 63 7.47 4.06 Unknown
49 C28636 C29076 AGGAGC ATG 146 16.95 8.66 Phage-related protein E. faecalis phage phiEF24C 3e-12 YP_001504167.1
50 C29073 C29447 AGGAGGA ATG 124 14.87 8.60 Endodeoxyribonuclease RusA

a See the text for details.
b ORFs were numbered sequentially starting from the ORF immediately downstream of the predicted origin of DNA replication.
c Genes located on the complementary strand are indicated by the letter C.
d The end position includes the stop codon.
e The sequence shown matches at least 60% of the consensus RBS (AGGAGG) sequence.
f RBS consensus sequence identified downstream of promoters.
g Molecular masses were calculated with the Molecular Biocomputing Suite (57).
h Isoelectric points were calculated with the Molecular Biocomputing Suite.
i Database searches based on homologies of deduced amino acid sequences to the nonredundant amino acid database provided by NCBI were performed with the

gapped BlastP algorithm. The best phage-related hits are included here.
j Abbreviations: Cons. hypo., conserved hypothetical; Put., putative.
k Probabilities derived from BLAST scores for obtaining a match by chance.
l Accession number or source.

1960 LU ET AL. APPL. ENVIRON. MICROBIOL.

 by on M
arch 4, 2010 

aem
.asm

.org
D

ow
nloaded from

 

http://aem.asm.org


lambda, the TMP is used as a template for tail polymerization
and remains inside the tail tube (37). The length of the phage
tail is directly proportional to the size of the TMP (36). TMPs
are found in almost all Siphoviridae phages (62). Like most
TMPs (800 to 5,006 amino acids long [55]), the 91-kDa protein
(889 amino acids long) of �1-A4 is the largest predicted pro-
tein in the �1-A4 genome (Table 2) and is encoded in the
putative tail protein gene region (Fig. 2). These features sug-
gested that this protein is most likely to be a TMP.

The N-terminal amino acid sequence (ADTRTIYLHT) de-
termined for the 36.7-kDa protein (Fig. 6) partially matched
amino acids 2 through 11 (ADTSSIYLHT) of gpORF21. Res-
idues 4 and 5 of gpORF21 were SS instead of RT. This result
is possibly due to miscalled amino acids during the sequencing
of this low-abundance protein. The protein appears to be a
baseplate protein, based on its weak TIGRfam match to the
baseplate assembly protein in L. lactis phage P2 (IPR013046).
Kondou et al. (40) showed that baseplate protein is essential
for phage Mu assembly and the generation of viable phages.

The N-terminal sequence of the 27.8-kDa protein (Fig. 6) is
TLNTNEIVYT, matching predicted amino acids 2 through 11
of gpORF23. This protein may be responsible for host speci-
ficity because of the similarity (found by PSI-BLAST analysis)
to a receptor binding protein in Lactococcus phage Q41 (ac-
cession number AAT81505.1). The protein also displayed se-
quence similarity to a hypothetical protein (ORF232) of Oeno-
coccus oeni phage fOg44 (Table 2). This may suggest that the
hypothetical protein of phage fOg44 is also involved in host
range determination.

Figure 2 shows that the putative tail morphogenesis module
was interspersed with ORFs belonging to the cell lysis module
and other ORFs with unknown functions. This is not usually
observed in other phages. This may have resulted from the
large genome inversion as described above. Two ORFs,
ORF38 and ORF44, are downstream of the lysis module and
possibly encode baseplate proteins. The product of ORF38
displays some similarity to the structural protein from L. lactis
phage r1t (73) (Table 2). It also shows weak similarity to the
receptor binding protein from Lactococcus phage TP901-1 and

to the putative tail-host specificity protein in Lactococcus
phage P335 (E value, 1.4). Receptor binding proteins or tail-
host specificity proteins are usually located on the baseplate.
Based on Pfam database analysis, gpORF44 showed weak sim-
ilarity to the baseplate structural protein domain.

Host cell lysis module. The cell lysis module consists of
ORF24, ORF35, and ORF36, encoding a putative endolysin
and two holins, respectively (Table 2). In double-stranded
DNA phages, the holin-lysin dual-lysis system is responsible for
bacterial lysis and phage progeny release (17). Unexpectedly,
this module is embedded in the tail morphogenesis module.

The predicted protein from ORF35 shows a strong sequence
similarity to the putative N-acetylmuramoyl-L-alanine amidase
of Enterococcus faecalis phage phiEF24C (Table 2). The pro-
tein appears to be a phage endolysin belonging to the amidase
family. The amidase family includes zinc amidases that have
N-acetylmuramoyl-L-alanine amidase activity. This enzyme do-
main cleaves the amide bond between N-acetylmuramoyl and
L-amino acids (preferentially D-lactyl–L-Ala) in bacterial cell
walls. The structure is known for phage T7 and indicates that
two of the conserved histidines are zinc binding (13). Surpris-
ingly, the putative endolysin gene in �1-A4 was flanked by two
predicted holin genes (ORF24 upstream and ORF36 down-
stream, Fig. 2).

The protein specified by ORF36 displays similarity to a hy-
pothetical protein from Leuconostoc citreum KM20. The pro-
tein contains a consensus sequence (through hidden Markov
model sequence analysis) which represents a putative phage
holin from a number of phage and prophage regions of gram-
positive bacteria. Like other holins, gpORF36 is small (94
amino acids) with stretches of hydrophobic sequence and is
encoded adjacent to the endolysin gene. The derived protein
from ORF24 shows homology with the product of the holin
gene which was found in the genomes of Granulicatella adia-
cens ATCC 49175 (Table 2) and Streptococcus pyogenes
MGAS10394. However, unlike other holin genes, ORF24 is
not adjacent to an endolysin gene. This has not been observed
in other phage genomes. It is noteworthy that gpORF36 was
not found to contain transmembrane domains, while gpORF24
had three transmembrane domains, similar to other holins
(76). Further in vitro experiments are needed to elucidate
whether ORF24 or ORF36 (or both) encodes a functional
holin.

DNA regulation and modification module. The regulation
and modification module contains ORF45, ORF47, and
ORF50 (greenish color in Fig. 2). ORF45 encodes a protein
that shows weak similarity to the transcriptional repressor,
CopG, found in Nocardioides sp. JS614 (Table 2). The putative
function of ORF45 as a regulator of transcription was sup-
ported by COG and Pfam database matches (data not shown).
CopG (also known as RepA) is responsible for the regulation
of plasmid copy number in Nocardioides. It binds to the repAB
promoter and controls the synthesis of the plasmid replication
initiator protein RepB. Many bacterial proteins that regulate
transcription bind DNA through a helix-turn-helix (HTH) mo-
tif. CopG displays a fully defined HTH motif structure; how-
ever, it is not involved in DNA binding but is apparently re-
sponsible for the maintenance of the intrinsic dimeric
functional structure and cooperativity (1, 25).

The product of ORF47 shows similarity to the HNH endo-

FIG. 4. HindIII restriction digestion analysis of �1-A4 DNA. Lane
M, 1-kb DNA ladder; lane �, �1-A4.
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nuclease of prophage lambda Ba04 in Lactobacillus casei BL23
(Table 2) and prophage L54a in Staphylococcus aureus subsp.
aureus COL (24). The HNH motif was originally identified in
the subfamily of HNH homing endonucleases, which initiate
the process of the insertion of mobile genetic elements into
specific sites (14). HNH endonucleases cleave phosphodiester
bonds and are found in bacteria and viruses (16, 26, 66). This
family includes pyocins, colicins, and anaredoxins.

Based on the Pfam database analysis, gpORF44 showed
similarity (E value, 7.3e-04) to the endodeoxyribonuclease
RusA. RusA functions as a Holliday junction resolvase (key
enzyme in DNA recombination). The RusA protein of E. coli
can resolve Holliday intermediates and correct the defects in
genetic recombination and DNA repair associated with inac-
tivation of RuvAB or RuvC (51).

Functional analysis. A functional distribution analysis of
multiple genome sequences was performed using compACTor.
The functional genome tree (Fig. 7) was constructed based on
the ORFs from 112 phages. The hosts for the 112 phages
include lactobacilli, lactococci, streptococci, enterococci, list-
eriae, bacilli, and clostridia. �1-A4 clusters with several Lac-
tococcus phages (functional cluster I [FC-I], 49.9 distance units
[du]) and was part of another node in a separate group con-
taining predominantly Bacillus phages (FC-II, 56.07 du, Fig. 7).
Within FC-I, four separate groups could be observed (17.6,
18.6, and 49.9 du apart) and individual groups appeared to be
tightly clustered.

As previously described in the literature, L. lactis 936-type
phages show extensive genetic similarities, and it has been
speculated that these phages have evolved from the same an-
cestral core genome (30, 52). The slight differences (0.47 du)
within this subgroup supported the notion of a group of highly
related phages. Based on the compACTor analysis, levels of

amino acid sequence similarities within FC-I were visualized in
ACT (10) (Fig. 5). As expected, 936-type phages revealed a
high level of sequence similarity and gene synteny in their
late-gene modules (packaging, morphogenesis, and lysis); how-
ever, a greater level of diversity was observed for early and
middle genes (replication).

A second group within FC-I (0.42 du, Fig. 7) comprised
prolate-head c2-like lactococcal phages (49). Both phages c2
(33) and bIL67 (65) showed extensive genome similarity (Fig.
5). Interestingly, the c2-like group exhibited similarity in their
structural module to L. lactis phage Q54 (23). In contrast, Q54
revealed a weaker similarity and gene synteny to 936-type
phages (data not shown). The apparent differences in the
ORFs of Q54 from 936- and c2-like phages were also illus-
trated by a functional distance of 18.6 du. With a distance of
49.9 du, Leuconostoc phage �1-A4 represented a distinct
member of FC-I. Only few ORFs showed amino acid sequence
similarities to the other three subgroups (Fig. 5). Based on the
similar functional distances between FC-I, FC-II, and �1-A4
of 56.07 and 49.9 du, respectively, it is tempting to speculate
that �1-A4 might represent a separate functional cluster (FC-
III) within this larger node.

Interestingly, �1-A4 did not cluster with the two prophages
harbored by L. mesenteroides ATCC 8293 (53) and L. citreum
KM20 (39), respectively (Fig. 7). Instead, �1-A4 clustered with
several Lactococcus phages. The two Leuconostoc prophages
show significant sequence similarity and gene synteny within
their structural modules. They formed a distinct functional
cluster (Fig. 7), and they were grouped together with several
Lactobacillus phages. In contrast, �1-A4 only displayed simi-
larity to the predicted large terminase subunits of the two other
phages (Fig. 5).

Overall, extensive genetic shuffling is apparent among the

FIG. 5. pACT alignment of �1-A4 against phages of its functional cluster (F-Cluster 1 in Fig. 7), as well as against Leuconostoc phage KM20
and L. mesenteroides ATCC 8293 prophage. Based on the FGD algorithm, predicted phage ORFeomes were subjected to an all-versus-all analysis.
Results were stored in pMSP data files (http://www.sanger.ac.uk/Software/ACT/v7/manual/start.html#COMPARISON-FILE-FORMAT) and
visualized using the Artemis comparison tool (10). Red lines show direct similarities between amino acid sequences of predicted ORFs, and blue
lines represent inverted similarity hits. Color intensities are proportional to the respective increasing levels of sequence similarity. Phage genomes
are represented by two gray lines (showing sense and antisense strands), and light blue arrowed boxes indicate individual predicted ORFs, their
relative lengths, and their orientations. Genomes are drawn to scale.

FIG. 6. Analysis of phage �1-A4 structural proteins. After the purification of �1-A4 by CsCl density gradient centrifugation, the phage-
containing band was analyzed by 4 to 12% SDS-PAGE. Lane M, molecular mass marker; lane �, proteins from �1-A4. The N-terminal amino acid
sequences of the five structural proteins were determined. The position of the N-terminal sequence in the corresponding �1-A4 ORF and its
proposed function are indicated.
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phages from different hosts, supporting the widely held view
that tailed phages are genetic mosaics arising by the exchange
of functional modules within a diverse genetic pool. The weak
amino acid similarities among these phages are indicated by
the long branches (�200 du).

Conclusion. To our knowledge, this study represents the first
complete genome sequence and genetic characterization of an
L. mesenteroides phage. Bioinformatic analysis revealed that
�1-A4 is a unique lytic phage compared to phages infecting
related species of LAB. Approximately 30% of the �1-A4
genome is inverted compared to the genome organization of
other sequenced phages. The endolysin gene was flanked by
two holin genes. The tail morphogenesis module was inter-
spersed with cell lysis genes. The overall amino acid sequences

of the phage proteins had little similarity to other sequenced
phages. Functional analyses showed that �1-A4 clusters with
several Lactococcus phages. The results of this study may pro-
vide new insights that deepen our understanding of phage
genetics and phage-host interactions in dynamic ecosystem
such as vegetable fermentations.
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FIG. 7. Functional genome distribution of 112 bacteriophages. A total of 112 bacteriophage genomes were analyzed using compACTor. A
distance matrix was calculated and subsequently imported into Mega4. The functional history was inferred using the UPGMA. The optimal tree
with a branch length sum of 2,115.25304686 is shown. The tree is drawn to scale.
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